Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0360223, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315121

RESUMO

Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution.


Assuntos
Transferência Genética Horizontal , Metagenômica , Animais , Humanos , Camundongos , Metagenômica/métodos , Biologia Computacional/métodos , Metagenoma , Bactérias/genética , DNA
2.
Cell Rep ; 41(6): 111609, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351400

RESUMO

Bacterial type IV secretion systems (T4SSs) are the specific devices that mediate the dissemination of antibiotic resistant genes via horizontal gene transfer (HGT). Multi-drug-resistant Enterococcus faecalis (E. faecalis) represents a clinical public health threat because of its transferable plasmid with a functional plasmid-encoded (PE)-T4SS. Here, we report a chromosome-encoded (CE)-T4SS that exists in 40% of E. faecalis isolates. Compared with the PE-T4SS, CE-T4SS displays distinct characteristics in protein architecture and is capable of mediating large and genome-wide gene transfer in an imprecise manner. Reciprocal exchange of CE-T4SS- or PE-T4SS-associated origin of transfer (oriT) could disrupt HGT function, indicating that CE-T4SS is an independent system compared with PE-T4SS. Taken together, the CE-T4SS sheds light on the knowledge of HGT in gram-positive bacteria and triggers us to explore more evolutionary mechanisms in E. faecalis.


Assuntos
Enterococcus faecalis , Transferência Genética Horizontal , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Transferência Genética Horizontal/genética , Plasmídeos/genética , Sistemas de Secreção Tipo IV/metabolismo , Cromossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Appl Environ Microbiol ; 88(23): e0155122, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36374022

RESUMO

Enterococcus faecalis is an important intestinal colonizing bacteria and can cause various tissue infections, including invasive blood infection (BI). The annual incidence of E. faecalis BI has been estimated to be ~4.5 per 100,000, with a fatality rate that can reach 20%. However, whether bacterial colonization or invasive infections are tissue based has not been thoroughly studied. In this study, we analyzed 537 clinical isolates from 7 different tissues to identify the key genomic elements that facilitate the colonization and invasive infection of E. faecalis. Comparative genomic analysis revealed that the BI E. faecalis isolates had the largest genome size but the lowest GC content, fsr quorum-sensing system genes were enriched in the BI E. faecalis, and the fsr gene cluster could enhance biofilm formation and serum resistance ability. Our findings also provide deep insight into the genomic differences between different tissue isolates, and the fsr quorum-sensing systems could be a key factor promoting E. faecalis invasion into the blood. IMPORTANCE First, we conducted an advanced study on the genomic differences between colonizing and infecting E. faecalis, which provides support and evidence for early and accurate diagnoses. Second, we discovered that fsr was significantly associated with blood infections, which also provides additional information for studies exploring the invasiveness of E. faecalis. Most importantly, we found that fsr played an important role in both biofilm formation and serum resistance ability in E. faecalis.


Assuntos
Enterococcus faecalis , Sepse , Humanos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética
4.
Microbiol Spectr ; 10(3): e0144522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35616396

RESUMO

Pleurotus eryngii (king oyster mushroom) is a commercially important mushroom with high nutritional and economic value. However, soft rot disease, caused by the pathogenic bacterium Erwinia beijingensis, poses a threat to its quality and production. Morphological and ultrastructural observations of P. eryngii were conducted at early, middle, and late stages of infection. At 2 days postinoculation (dpi), small yellow spots on the fruiting body were observed. The infected tissue displayed hyphal deformations and breaks at 5 dpi. At 9 dpi, damage to cell wall integrity and absence of intact cellular organelles were observed and the diseased fruiting bodies were unable to grow normally. Transcriptome analysis identified 4,296 differentially expressed genes in the fruiting body following infection. In fact, broad transcriptional reprogramming was observed in infected fruiting bodies compared to controls. The affected pathways included antioxidant systems, peroxisome biogenesis, autophagy, and oxidation-reduction. More specifically, pex genes were downregulated during infection, indicating impaired peroxisome homeostasis and redox balance. Additionally, genes encoding chitinase, ß-1,3-glucanase, and proteases associated with cell wall degradation were upregulated in infected P. eryngii. This study provides insights into the responses of P. eryngii during soft rot disease and facilitates the understanding of the pathogenic process of bacteriosis in mushrooms. IMPORTANCEPleurotus eryngii (king oyster mushroom) is a popular and economically valuable edible mushroom; however, it suffers from various bacterial diseases, including soft rot disease caused by the bacterium Erwinia beijingensis. Here, we examined bacterial infection of the mushroom through morphological and ultrastructural observations as well as transcriptome analysis. Pathogen attack damaged the cell structure of P. eryngii, including the cell wall, and also induced high levels of reactive oxygen species. These results were reflected in differential gene expression in P. eryngii as a response to the pathogenic bacteria, including genes involved in antioxidant systems, peroxisome biogenesis, autophagy, oxidation-reduction, ribosome biogenesis, and cell-wall degradation, among others. This study provides insights into the structural and molecular responses of P. eryngii during soft rot disease, improving our understanding and the potential control of the pathogenic process of bacteriosis in mushrooms.


Assuntos
Infecções Bacterianas , Pleurotus , Antioxidantes/química , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Pleurotus/química , Pleurotus/genética , Pleurotus/metabolismo
6.
J Fungi (Basel) ; 8(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205921

RESUMO

Lentinula edodes is a tetrapolar basidiomycete with two haploid nuclei in each cell during most of their life cycle. Understanding the two haploid nuclei genome structures and their interactions on growth and fruiting body development has significant practical implications, especially for commercial cultivars. In this study, we isolated and assembled the two haploid genomes from a commercial strain of L. edodes using Illumina, HiFi, and Hi-C technologies. The total genome lengths were 50.93 Mb and 49.80 Mb for the two monokaryons SP3 and SP30, respectively, with each assembled into 10 chromosomes with 99.63% and 98.91% anchoring rates, respectively, for contigs more than 100 Kb. Genome comparisons suggest that two haploid nuclei likely derived from distinct genetic ancestries, with ~30% of their genomes being unique or non-syntenic. Consistent with a tetrapolar mating system, the two mating-type loci A (matA) and B (matB) of L. edodes were found located on two different chromosomes. However, we identified a new but incomplete homeodomain (HD) sublocus at ~2.8 Mb from matA in both monokaryons. Our study provides a solid foundation for investigating the relationships among cultivars and between cultivars and wild strains and for studying how two genetically divergent nuclei coordinate to regulate fruiting body formation in L. edodes.

8.
Microbiologyopen ; 10(5): e1233, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713602

RESUMO

Oudemansiella aparlosarca is an edible mushroom possessing medicinal and health benefits. Although there are studies on the cultivation of O. aparlosarca, only a few studies have focused on its genetics and life cycle. Therefore, the main objective of this study was to identify the nuclear conditions of basidiospores and homokaryotic and heterokaryotic hyphal cells and to determine the influence of different nuclear conditions on basidiospore diameter in O. aparlosarca. Two parental strains: strain-55 and strain-81 were used. Staining of basidiospores and hyphal cells in the apical region was performed. We observed the following nuclear conditions: non-nucleate, mononucleate, binucleate, and multinucleate. In both parental strains, binucleate spores were predominant, while the number of non-nucleate spores was the lowest. The diameter of non-nucleate spores was the smallest, being 11.52 µm and 12.15 µm in parental strain-81 and strain-55, respectively, while multinucleate spores had the largest diameter, being 14.78 µm in both parental strains. Both homokaryotic and heterokaryotic strains were identified in isolated single spores from parental strains. Binucleate cells were majorly present in heterokaryotic hyphal cells, and multinucleate cells were predominant in homokaryotic hyphal cells. We conclude that O. aparlosarca contains homokaryotic and heterokaryotic basidiospores, which indicates an amphithallic life cycle. The observed binucleate spores might be the result of post-meiotic mitosis.


Assuntos
Agaricales/citologia , Agaricales/metabolismo , Núcleo Celular/metabolismo , Hifas/metabolismo , Esporos Fúngicos/citologia , Esporos Fúngicos/metabolismo , Estágios do Ciclo de Vida
9.
Appl Microbiol Biotechnol ; 105(23): 8675-8688, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716786

RESUMO

A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.


Assuntos
Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Polissacarídeos Fúngicos/farmacologia , Peptídeos/farmacologia , Reishi , Agaricus , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Camundongos , Córtex Pré-Frontal/metabolismo , Ratos , Esporos Fúngicos , Estresse Psicológico , Sacarose , Regulação para Cima
10.
Fungal Genet Biol ; 156: 103614, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400332

RESUMO

Lentinula edodes, a commercially important mushroom, is cultivated worldwide. Artificially cultivated L. edodes often present with abnormal symptoms in the fruiting body, which affect their commercial value and reduce production efficiency. In this study, we carried out a comparative transcriptome analysis of normal fruiting body pileus (LeNP), normal margin in abnormal fruiting body pileus (LeAPNM), and abnormal margin in abnormal fruiting body pileus (LeAPAM). Metabolic pathways such as those involved in transmembrane transport, ribosome production, tryptophan metabolism, arginine and proline metabolism, and the metabolism of other amino acids were significantly enriched in LeAPAM. F-box, short-chain dehydrogenases/reductases, the major facilitator superfamily, and the FMN_red superfamily are related to malformation in L. edodes. Genes encoding heat shock proteins, G protein, and ß-1,3-glucanase in the GH5 family showed different expression patterns, suggesting that these genes are involved in the development of L. edodes fruiting bodies. In particular, CAZymes, which are involved in the development of cell walls in L. edodes, were highly expressed in LeAPAM. According to TEM observation, the cell wall of LeAPAM samples showed significant thickening compared to the other samples. These results suggested that cell wall anabolism in LeAPAM samples was more active than that in normal fruiting bodies, enhancing the environmental adaptability of the fungus. This study provides preliminary data for future research aimed at solving the phenomenon of abnormal fruiting bodies of L. edodes.


Assuntos
Agaricales , Cogumelos Shiitake , Carpóforos/genética , Perfilação da Expressão Gênica , Cogumelos Shiitake/genética , Transcriptoma/genética
11.
Plant Dis ; 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003034

RESUMO

Oudemansiella raphanipes is an edible mushroom with medicinal properties,which has been recently cultivated throughout China (Hao et al. 2016). In October 2019, a disease with symptoms similar to that of cobweb disease (Carrasco et al. 2017) was observed in O. raphanipes in the Tongzhou District, Beijing, China, infecting 25% of the fruiting bodies (Fig. 1A, B). White cotton-like net of hyphae were present typically on the casing soil or on the stipe of the fruiting bodies; they gradually spread to the pileus, covering the fruiting body, which eventually wilted and died (Fig. 1C, D), resulting in yield reduction and economic loss. Cultures were obtained by aseptically transferring the diseased fruiting bodies onto potato dextrose agar (PDA) at 25 °C; they were deposited in the culture collection (ID: JZBQA1) of the Beijing Academy of Agricultural and Forestry Sciences, China. The colonies were pale white/white, with an occasional formation of yellow diffusing pigments on the reverse side (Fig. 1E-G). Conidiophores were Cladobotryum-like, phialides were solitary or commonly divergent in whorls of 2-3 (-4), lageniform to subulate, 20-63.5 (-66) × (3.8-) 4-5.3 (-9) µm (n = 40) (Fig. 1H, I); conidia were hyaline, oval to ellipsoidal, with one or two septa, (10.4-) 11.4-20 (-22) × 6.6-9.5 (-10) µm (n = 40) (Fig. 1J); chlamydospores were globose or ellipsoidal (Fig. 1K). The morphological characteristics were consistent with that of Cladobotryum varium (Back et al. 2012a, b; Sun et al. 2019). For species-level fungal identification, genomic DNA was extracted using the DNeasy Plant Mini Kit (Qiagen, USA). The internal transcribed spacer (ITS) regions, translation elongation factor 1 alpha exon (TEF1-α), RNA polymerase II subunit b (RPB2), and RNA polymerase I largest subunit (RPB1) genes were amplified using the primer pairs ITS1/ITS4 (White et al. 1990), EF1-983F/2218R (Rehner and Buckley 2005), RPB2-5F/7cR (Liu et al. 1999), and RPB1F1 (5'-GCCGATGAAGTTGGTCTA-3')/RPB1R1 (5'-TATGTTGCGGTGAGCCTT-3'), respectively. A BLAST nucleotide search showed 99.34% (449/452 bp), 99.24% (914/921 bp), 98.08% (1,022/1,042 bp), and 99.66% (588/590 bp) homology, respectively, with those of the ex-type culture of Hypomyces aurantius TFC 95-171 (FN859425.1, FN868743.1, FN868679.1, and FN868805.1). The four sequences were deposited in GenBank (accession numbers: MW534093, MW560066, MW560064, and MW560065). Phylogenetic trees based on the assessed gene loci revealed that the JZBQA1 strain was closely related to C. varium (Fig. 2). A in vivo pathogenicity test was performed using the fruiting bodies (Fig. 1L, O). Spore suspension (108 spores/mL) of the JZBQA1 strain or sterile distilled water was sprayed on six healthy fruiting bodies, maintained in an artificial climate chamber at 24-26°C. Cobweb-like features were observed on the fruiting bodies treated with the spore suspension 2-3 days post-inoculation; while those treated with water did not exhibit such features (Fig. 1L, O). The same pathogen was re-isolated and confirmed from the infected fruiting bodies by integrated analysis of morphological characteristics and gene sequencing data. Cladobotryum spp. infects different varieties of cultivated edible mushrooms, resulting in the development of cobweb diseases (Cao et al. 2020; Carrasco et al. 2017). Cladobotryum varium is the causal agent of cobweb disease in Flammulina velutipes and Hypsizygus marmoreus (Back et al. 2012a, b). To our knowledge, this is the first report of cobweb disease caused by C. varium in O. raphanipes. This finding is a valuable contribution to the knowledge of cobweb disease development in edible fungi.

12.
Curr Microbiol ; 78(1): 179-189, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33123750

RESUMO

Pantoea beijingensis, a gram-negative pathogenic bacterium, causes soft rot disease in the fungus Pleurotus eryngii in China. However, the taxonomic classification of this pathogen is controversial due to close relationships between bacteria of the genera Pantoea and Erwinia. This study aimed to resolve the identity of P. beijingensis using phylogenomic and systematic analyses of Pantoea and Erwinia by whole-genome sequencing. Single-copy orthologs identified from the Erwinia/Pantoea core genomes were used to delineate Erwinia/Pantoea phylogeny. P. beijingensis LMG27579T clustered within a single Erwinia clade. A whole-genome-based phylogenetic tree and average nucleotide and amino-acid identity values indicate that P. beijingensis LMG27579T should be renamed Erwinia beijingensis. The hrp/hrc genes encoding type III secretion system (T3SS) proteins in Erwinia and Pantoea were divided into five groups according to gene contents and organization. Neighbor-joining-inferred phylogenetic trees based on concatenated HrcU, HrcN, and HrcR in the main hrp/hrc cluster showed that E. beijingensis T3SS proteins are closely related to those in Ewingella americana, implying that E. beijingensis and E. americana have a recent common hrp/hrc gene ancestor. Furthermore, T3SS proteins of Erwinia and Pantoea were clustered in different clades separated by other bacterial T3SS proteins. Thus, T3SS genes in Pantoea and Erwinia strains might have been acquired by horizontal gene transfer. Overall, our findings clarify the taxonomy of the bacterium causing soft rot in P. eryngii, as well as the genetic structure and classification of the hrp/hrc T3SS virulence factor. We propose that T3SS acquisition is important for E. beijingensis emergence and pathogenesis.


Assuntos
Pleurotus , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , China , Enterobacteriaceae , Pantoea , Filogenia , Pleurotus/genética , Sistemas de Secreção Tipo III/genética
13.
J Fungi (Basel) ; 6(4)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171663

RESUMO

Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents.

14.
Fungal Biol ; 124(2): 135-143, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008754

RESUMO

Lentinula edodes is a widely-produced mushroom in China that forms a brown film via pigment accumulation on mature mycelial surfaces to ensure high-quantity and high-quality fruiting body formation. Here, ultraviolet-visible, infrared spectra, and elemental analyses predicted that the pigment in the brown film was melanin. Electron microscopy revealed the size, morphological characteristics, accumulation, and morphogenesis of electron-dense material, which were similar to those of melanin, as well as subcellular structural changes during brown film formation. The electron-dense material appeared as granules, vesicles, and polymers. The accumulation of electron-dense materials on the cell wall was followed plasmolysis, plasma membrane disruption, electron-dense material accumulation in the interstitial space, and gradual accumulation on the outer cell wall. Dolipore septa degradation and morphogenetic cell death occurred during browning. In the final stage of browning, the dolipore septum disappeared and the cell was nearly empty. This study provides a cytological foundation for evaluating the regulation of brown film formation in L. edodes.


Assuntos
Melaninas/metabolismo , Cogumelos Shiitake , Carpóforos/metabolismo , Proteínas Fúngicas , Microscopia Eletrônica de Transmissão , Micélio/metabolismo , Micélio/ultraestrutura , Pigmentos Biológicos , Cogumelos Shiitake/crescimento & desenvolvimento , Cogumelos Shiitake/metabolismo , Análise Espectral
15.
Sci Rep ; 9(1): 13725, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548551

RESUMO

Fatty liver (FLD) disease is a consequence of metabolic syndrome, which is a health problem worldwide with a phenomenal rise in prevalence. In this study, two hepatoprotective polysaccharide-peptides were extracted from the mushroom Auricularia polytricha followed by chromatographic fractionation of the extract on the ion exchanger DEAE-cellulose and gel filtration on Sephadex-200 to yield two purified fractions: APPI and APPII. The monosaccharide compositions, FT-IR, N-terminal sequences, internal peptide sequences and molecular weights of the two fractions were determined. Furthermore, their hepatoprotective effect on human hepatoma HepG2 cells in vitro and in an animal model of fatty liver disease was evidenced by the findings that APPI and APPII diminished lipid deposit in cells, blood and the liver, increased cellular antioxidant activity and viability, and protected the liver against injury. The mechanistic study revealed that APPI and APPII activated the adiponectin pathway, up-regulated expression of genes controlling free fatty acid (FFA) oxidation, such as AMPK, CPTl, ACOX1 and PPARα genes, enhanced lipid metabolism, preserved hepatic function, promoted the antioxidant defense system and reduced lipid peroxidation. Hence the bioactive compounds of A. polytricha could serve as therapeutic agents in the food and pharmaceutical industries.


Assuntos
Agaricales , Produtos Biológicos/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Animais , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar
17.
Int J Biol Macromol ; 95: 778-787, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27932257

RESUMO

In present work, the strain of Grifola frondosa SH-05 was used as a vector of zinc biotransformation to produce the IZPS. The bioactivities including antioxidant and antibacterial activities in vitro and anti-aging properties in vivo of IZPS were investigated comparing with the IPS. The results which were in consistent with the results of histopathology assay demonstrated that the IZPS had superior antioxidant and anti-aging activities by scavenging the hydroxyl and DPPH radicals, increasing enzyme activities, decreasing the MDA contents and ameliorating the anile condition of mice. Besides, the IZPS also showed potential antibacterial activities. The IZPS with higher bioactivities was composed of were Rha, Ino and Glu with a molar ratio of 4.7:3.6:1. These conclusions indicated that the IZPS might be a potential source of natural antioxidant, antibacterial agent and anti-aging agent.


Assuntos
Envelhecimento/efeitos dos fármacos , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Grifola/química , Polissacarídeos/farmacologia , Zinco/metabolismo , Animais , Antibacterianos/biossíntese , Antioxidantes/metabolismo , Bactérias/efeitos dos fármacos , Biomassa , Biotransformação , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Monossacarídeos/análise , Polissacarídeos/biossíntese
18.
Saudi J Biol Sci ; 23(5): 607-13, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27579010

RESUMO

In this study, the mycelial growth rate, mycelial colonization time, yield, and biological efficiency of the edible mushroom Oudemansiella canarii were determined, and the effects of different substrate combinations on productivity, chemical contents and amino acids were evaluated. Lignocellulosic wastes, such as cottonseed hull, sawdust, corncob, and their combinations supplemented with 18% wheat bran and 2% lime, were used for the cultivation of O. canarii. The biological efficiency (BE) and essential amino acid content of treatment T1, which consisted of 80% cottonseed hull, were the highest among all the tested treatments. Mixtures that included sawdust, such as treatments T2 (80% sawdust), T4 (40% sawdust + 40% cottonseed hull), and T6 (40% sawdust + 40% corncob), exhibited lower yield and BE. Corncob was good for O. canarii production in terms of yield and BE, whereas the mycelial growth rate and colonization time were lower compared to those on other substrates. Comparing the BE, essential amino acids, and other traits of the six treatments, treatment T1 (80% cottonseed hull) was the best formula for O. canarii cultivation and should be extended in the future.

19.
Curr Microbiol ; 72(6): 738-43, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26897127

RESUMO

Three Gram-negative, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Hericium erinaceus showing symptoms of soft rot disease in Beijing, China. Sequences of partial 16S rRNA gene placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed P. eucalypti and P. anthophila as their closest phylogenetic relatives and indicated that these isolates constituted a possible novel species. DNA-DNA hybridization studies confirmed the classification of these isolates as a novel species and phenotypic tests allowed for differentiation from the closest phylogenetic neighbours. The name Pantoea hericii sp. nov. [Type strain LMG 28847(T) = CGMCC 1.15224(T) = JZB 2120024(T)] is proposed.


Assuntos
Agaricales/química , Carpóforos/química , Pantoea/isolamento & purificação , Doenças das Plantas/microbiologia , Verduras/microbiologia , China , Pantoea/classificação , Pantoea/genética , Filogenia
20.
Curr Microbiol ; 72(2): 207-212, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26581526

RESUMO

Four Gram-negative-staining, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Pleurotus eryngii showing symptoms of bacterial blight disease in Beijing, China. Nearly complete 16S rRNA gene sequencing placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed Pantoea agglomerans as their closest phylogenetic relatives. DNA-DNA hybridization and phenotypic tests confirmed the classification of the new isolates as a novel species. The name Pantoea pleuroti sp. nov. [type strain KCTC 42084(T) = CGMCC 1.12894(T) = JZB 2120015(T)] is proposed.


Assuntos
Pantoea/classificação , Pantoea/isolamento & purificação , Pleurotus , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Carpóforos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Pantoea/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...